En el Laboratorio de Resonancias Magnéticas del Centro Atómico Bariloche se dispone de un Microscopio de Barrido de Sonda capaz de operar en los modos Fuerza Atómica, Fuerza Magnética y Conductancia.

El microscopio fue adquirido a la empresa Veeco (actualmente Bruker) y es modelo Dimension 3100 con electrónica Nanoscope IV. Las características más importantes del equipo son:

  • Opera en aire y tiene una amplia zona de trabajo que permite medir muestras de varios cm de lado, o bien añadir instrumental adicional cercano a la zona de la muestra.
  • Para la obtención de imágenes topográficas puede usarse tanto en modo contacto como en contacto intermitente (tapping).
  • Pueden obtenerse imágenes en zonas de hasta 100 x 100 μm2 de video que permite recorrer la muestra hasta encontrar la zona que se desea estudiar.
  • Posee una resolución lateral de aproximadamente 20 nm (depende del tipo de punta que se utilice) y en altura puede medir escalones de menos de 1 nm.
  • Utilizando puntas magnéticas se obtienen imágenes del gradiente de fuerza vertical, a partir de las cuales es posible inferir la estructura de dominios magnéticos.

AFM CONDUCTOR

- Como microscopio de fuerza atómica conductor (CAFM), el AFM trabaja en modo contacto utilizando puntas conductoras. Se aplica una tensión eléctrica a la punta y se mide la corriente que circula entre la punta y la muestra. De esta manera, es posible realizar mapeos de conductividad y topografía de manera simultánea. Un amplificador permite medir corrientes en el rango de sub pA al nA (TUNA) y en el rango del nA al μA (CAFM). La resolución lateral típica es de 30 nm y permite caracterizar desde materiales aislantes, semicondutores hasta materiales metálicos.

Dentro de los modos existentes utilizando el CAFM, es posible realizar la caracterización de materiales piezoeléctricos, mediante lo que se conoce como PFM (piezoelectric force microscopy). En este modo el microscopio permite visualizar dominios ferreléctricos y medir la polarización eléctrica de estos materiales analizando la deformación que sufre la muestra al aplicarle un voltaje.

PROPIEDADES MECÁNICAS

- El microscopio cuenta con cantilevers especiales con punta de diamante que permiten realizar nanoindentaciones en las muestras y analizar las propiedades mecánicas de los sistemas a escala nanométrica. En este modo el microscopio mueve la punta en la dirección vertical (perpendicular a la superficie de la muestra) sin producirse un desplazamiento lateral de la misma. La punta penetra de manera controlada en la muestra y analizando las curvas de tensión-deformación es posible obtener parámetros como el módulo de Young y la dureza del material.

El sistema de detección del microscopio, mediante cuatro fotodiodos, permite analizar la deformación lateral de la punta (no solo la deformación vertical relacionada típicamente con la topografía). De esta manera es posible medir las propiedades de fricción de las muestras.

Extensiones del sistema.

  • Se han diseñado dos electroimanes para aplicar campo magnético de hasta 300 Oe en el plano de barrido o perpendicular a la superficie de la muestra.
  • Se dispone de una celda Peltier para realizar medidas por encima de temperatura ambiente.
  • El AFM cuenta con un módulo de señales externo que permite acceder en modo lectura y escritura a las señales de medición / control y movimiento del microscopio. El equipo cuenta además con un conversor digital - analógico y un lock-in, especialmente adaptados para personalizar la implementación de nuevas experiencias.

El microscopio fue adquirido a la empresa Veeco (actualmente Bruker) y es modelo Dimension 3100 con electrónica Nanoscope IV. Las características más importantes del equipo son:

  • Opera en aire y tiene una amplia zona de trabajo que permite medir muestras de varios cm de lado, o bien añadir instrumental adicional cercano a la zona de la muestra.
  • Para la obtención de imágenes topográficas puede usarse tanto en modo contacto como en contacto intermitente (tapping).
  • Pueden obtenerse imágenes en zonas de hasta 100 x 100 μm2 de video que permite recorrer la muestra hasta encontrar la zona que se desea estudiar.
  • Posee una resolución lateral de aproximadamente 20 nm (depende del tipo de punta que se utilice) y en altura puede medir escalones de menos de 1 nm.
  • Utilizando puntas magnéticas se obtienen imágenes del gradiente de fuerza vertical, a partir de las cuales es posible inferir la estructura de dominios magnéticos.

AFM CONDUCTOR

- Como microscopio de fuerza atómica conductor (CAFM), el AFM trabaja en modo contacto utilizando puntas conductoras. Se aplica una tensión eléctrica a la punta y se mide la corriente que circula entre la punta y la muestra. De esta manera, es posible realizar mapeos de conductividad y topografía de manera simultánea. Un amplificador permite medir corrientes en el rango de sub pA al nA (TUNA) y en el rango del nA al μA (CAFM). La resolución lateral típica es de 30 nm y permite caracterizar desde materiales aislantes, semicondutores hasta materiales metálicos.

Dentro de los modos existentes utilizando el CAFM, es posible realizar la caracterización de materiales piezoeléctricos, mediante lo que se conoce como PFM (piezoelectric force microscopy). En este modo el microscopio permite visualizar dominios ferreléctricos y medir la polarización eléctrica de estos materiales analizando la deformación que sufre la muestra al aplicarle un voltaje.

PROPIEDADES MECÁNICAS

- El microscopio cuenta con cantilevers especiales con punta de diamante que permiten realizar nanoindentaciones en las muestras y analizar las propiedades mecánicas de los sistemas a escala nanométrica. En este modo el microscopio mueve la punta en la dirección vertical (perpendicular a la superficie de la muestra) sin producirse un desplazamiento lateral de la misma. La punta penetra de manera controlada en la muestra y analizando las curvas de tensión-deformación es posible obtener parámetros como el módulo de Young y la dureza del material.

El sistema de detección del microscopio, mediante cuatro fotodiodos, permite analizar la deformación lateral de la punta (no solo la deformación vertical relacionada típicamente con la topografía). De esta manera es posible medir las propiedades de fricción de las muestras.

Extensiones del sistema.

  • Se han diseñado dos electroimanes para aplicar campo magnético de hasta 300 Oe en el plano de barrido o perpendicular a la superficie de la muestra.
  • Se dispone de una celda Peltier para realizar medidas por encima de temperatura ambiente.
  • El AFM cuenta con un módulo de señales externo que permite acceder en modo lectura y escritura a las señales de medición / control y movimiento del microscopio. El equipo cuenta además con un conversor digital - analógico y un lock-in, especialmente adaptados para personalizar la implementación de nuevas experiencias.

El microscopio fue adquirido a la empresa Veeco (actualmente Bruker) y es modelo Dimension 3100 con electrónica Nanoscope IV. Las características más importantes del equipo son:

  • Opera en aire y tiene una amplia zona de trabajo que permite medir muestras de varios cm de lado, o bien añadir instrumental adicional cercano a la zona de la muestra.
  • Para la obtención de imágenes topográficas puede usarse tanto en modo contacto como en contacto intermitente (tapping).
  • Pueden obtenerse imágenes en zonas de hasta 100 x 100 μm2 de video que permite recorrer la muestra hasta encontrar la zona que se desea estudiar.
  • Posee una resolución lateral de aproximadamente 20 nm (depende del tipo de punta que se utilice) y en altura puede medir escalones de menos de 1 nm.
  • Utilizando puntas magnéticas se obtienen imágenes del gradiente de fuerza vertical, a partir de las cuales es posible inferir la estructura de dominios magnéticos.

AFM CONDUCTOR

- Como microscopio de fuerza atómica conductor (CAFM), el AFM trabaja en modo contacto utilizando puntas conductoras. Se aplica una tensión eléctrica a la punta y se mide la corriente que circula entre la punta y la muestra. De esta manera, es posible realizar mapeos de conductividad y topografía de manera simultánea. Un amplificador permite medir corrientes en el rango de sub pA al nA (TUNA) y en el rango del nA al μA (CAFM). La resolución lateral típica es de 30 nm y permite caracterizar desde materiales aislantes, semicondutores hasta materiales metálicos.

Dentro de los modos existentes utilizando el CAFM, es posible realizar la caracterización de materiales piezoeléctricos, mediante lo que se conoce como PFM (piezoelectric force microscopy). En este modo el microscopio permite visualizar dominios ferreléctricos y medir la polarización eléctrica de estos materiales analizando la deformación que sufre la muestra al aplicarle un voltaje.

PROPIEDADES MECÁNICAS

- El microscopio cuenta con cantilevers especiales con punta de diamante que permiten realizar nanoindentaciones en las muestras y analizar las propiedades mecánicas de los sistemas a escala nanométrica. En este modo el microscopio mueve la punta en la dirección vertical (perpendicular a la superficie de la muestra) sin producirse un desplazamiento lateral de la misma. La punta penetra de manera controlada en la muestra y analizando las curvas de tensión-deformación es posible obtener parámetros como el módulo de Young y la dureza del material.

El sistema de detección del microscopio, mediante cuatro fotodiodos, permite analizar la deformación lateral de la punta (no solo la deformación vertical relacionada típicamente con la topografía). De esta manera es posible medir las propiedades de fricción de las muestras.

Extensiones del sistema.

  • Se han diseñado dos electroimanes para aplicar campo magnético de hasta 300 Oe en el plano de barrido o perpendicular a la superficie de la muestra.
  • Se dispone de una celda Peltier para realizar medidas por encima de temperatura ambiente.
  • El AFM cuenta con un módulo de señales externo que permite acceder en modo lectura y escritura a las señales de medición / control y movimiento del microscopio. El equipo cuenta además con un conversor digital - analógico y un lock-in, especialmente adaptados para personalizar la implementación de nuevas experiencias.

El nanomanipulador consta de una platina que opera dentro de la cámara de trabajo de un microscopio SEM con 4 pequeños brazos robóticos (basado en picomotores y actuadores) comandados alternativamente con un joystick. Se pueden acercar 4 puntas de prueba de tungsteno al objeto y moverlas con una precisión de 5 nm. El microscopio electrónico de barrido permite obtener la imagen del objeto y del trabajo realizado con las puntas simultáneamente y en tiempo real. A través de conectores pasantes se conecta un dispositivo de caracterización eléctrica Keithley SCS 4200 con resolución en el rango de fA y nV a 100mA, lo que permite medir resistencias hasta del orden de TΩ y tomar curvas I-V. Las puntas de tungsteno (de alrededor de 50nm en su extremo) permiten tocar y medir las propiedades eléctricas de la nanoestructura: nanotubo, esfera, barra, etc. Previamente a las puntas se le realiza un tratamiento para evitar la formación de una capa de óxido en su superficie y que éstas no adicionen una resistencia espuria de contacto.

TransporteelectricoRMNanomanipulador2

Se puede variar la temperatura de la muestra en el rango -500C a 1500C. Este equipo permite el estudio puntual de la contribución a la resistencia eléctrica de los bordes de granos, de nanoestructuras y de interfaces electrodo/material estudiar la existencia de barreras físicas (tipo Schottky o túnel) que originan fenómenos no lineales en la conducción eléctrica.

En el Laboratorio de Resonancias Magnéticas del Centro Atómico Bariloche se dispone de un Espectrómetro Bruker modelo ESP 300. Este equipo permite medir el espectro de resonancia electrónica de un sistema de espines (ESR por sus siglas en inglés), el cual corresponde a la absorción de energía del campo de microondas incidente cuando se sintoniza la frecuencia de radiación de la microonda con la frecuencia natural del sistema.

En materiales paramagnéticos diluidos el espectro de ESR brinda información de la naturaleza de las especies resonantes, la simetría del entorno cristalino y también permite cuantificar los iones resonantes. Cuando el sistema es concentrado se obtiene, además, información de la naturaleza de las interacciones presentes entre los iones magnéticos. En el caso de compuestos magnéticamente ordenados el espectro de resonancia ferromagnética (FMR) permite conocer las anisotropías magnéticas y los acoples magnéticos presentes. Realizando estudios en función de temperatura se pueden caracterizar las transiciones de fase del sistema.

El espectrómetro Bruker ESP 300 tiene las siguientes características:

  • Puede operar en cuatro frecuencias diferentes: 1.2, 9.4, 24 y 35 GHz.
  • Cuenta con un electroimán que permite variar el campo magnético entre 0 y 2.1 T.
  • Es posible realizar medidas en función de temperatura desde 4 a 1000 K, dependiendo de la frecuencia.
  • Pueden medirse muestras sólidas, polvos, películas delgadas, líquidos, etc.
  • Tiene un límite de detección de aproximadamente 1013  espines/Oe

Este set-up permite colectar datos de difracción de Rayos X y, simultáneamente, realizar mediciones de conductividad eléctrica por el método de Van der Paw o mediciones de espectroscopia de impedancia a alta temperatura bajo atmósfera de oxígeno controlada.

Su principal aplicación es el ensayo de arreglos electrodo/electrolito ensamblados como media-celdas, sometiéndolos a ciclos de temperatura en atmósferas oxidantes (cámara Anton Para HTK 1200N disponible) o reductoras (ej Anton Parr HRK 900 no disponible), y midiendo simultáneamente propiedades electroquímicas y fisicoquímicas. El set-up cuenta con un portamuestra adaptado para una cámara de alta temperatura Anton Paar HTK 1200 (de hasta 1200 ºC) acoplada a un equipo de difracción de Rayos X Panalytical Empyrean con un detector Pixcel 3D. Además, el portamuestra puede acoplarse a líneas de sincrotrón para mediciones de difracción de Rayos X o de espectroscopia de absorción de Rayos X en forma simultánea con mediciones de conductividad eléctrica por el método de cuatro puntas o mediciones de espectroscopia de impedancia.

Página 2 de 2

Últimas noticias

La Nano´17

La Nano´17

La Nano´17 en el Balseiro  El Pabellón Guido Beck fue el lugar del encuentro (Créd. Prensa IB). Casi 250 investigadoresy tecnólogos del campo de la nanociencia y la nanotecnología se reunieron en...

Premio INNOVAR Investigacion Aplicada 20…

Gran premio INNOVAR 2016  Los  investigadores Paolo Catalano y  Martín Bellino,  que  pertenecen al Departamento de Micro y Nanotecnología del  INN,  han sido distinguidos  con el Gran Premio Innovar 2016.  Este ...

Cnea Ministerio de Planificacion Federal, Inversión Pública y Servicios