More than 40 Years of Neutronics Experiments in Critical Facilities of Cadarache: from EOLE and MINERVE to the Future ZEPHYR Reactor

CEA - Nuclear Energy Directorate, Reactor Studies Department
Cadarache Centre
stephane.cathalau@cea.fr

IGORR-2014 Conference – 17-21 November 2014 – San Carlos de Bariloche Argentina
OUTLINE

- The EOLE, MINERVE Zero Power Reactors

- Overview of the Experiments performed for validation of French codes and Nuclear Data Library

- What about the future of ZPR? The ZEPHIR Project.
Main features

- Light Water Facility (1st criticality: 1965)
- Max. Power 1 kW (usually 30W)
- Outer vessel $\phi=2.3\text{m}$ in a concrete tank
- Inner vessel built for each program ($\phi\approx1\text{m}$)
- Core height $\sim80\text{cm}$ (fissile)
- 4 B\textsubscript{4}C safety rods + 1 pilot rod
- Criticality: water flooding + pilot rod adjustment
- Thermal regulation at $\pm0.1^\circ\text{C}$ from 5 to 90°C

A wide range of core configurations

- Fuels:
 - UO\textsubscript{2} (3.7\% ^{235}U) fuel pins
 - MOX (4\% to 8.7\% Pu) fuel pins
 - MTR assemblies (U_3Si_2 plates with 20\% ^{235}U)
 - Fuels with burnable poisons (UO\textsubscript{2}-Gd\textsubscript{2}O\textsubscript{3})
- Absorbers: B\textsubscript{4}C, Hf, Ag-In-Cd, Pyrex rods
- Stainless Steel or Light Water Reflectors
- Moderation by Light Water with the possibility to add boron (0 – 3000 ppm)
Main features

- 140m³ Light Water Pool Facility (1ˢᵗ crit. 1959)
- Max. Power 100W, room T°C
- **Driver Zone** (Outer): standard MTR 93% UAl assemblies reflected by graphite
- **Test Zone** (Inner): any kind of core configuration thermal, epithermal, fast neutron spectra
- 4 Hf control rods + 1 fine pilot rod
- Criticality: control rod adjustment

Main applications

- Reactivity measurements of samples
 - Fresh and burnt fuels from LWR or FBR
 - Isotopic Reactivity Worth: ^{109}Ag, ^{103}Rh, ^{133}Cs, ^{239}Pu, ^{241}Am, ^{244}Cm...
- Neutron Activation Analysis
- Development and validation of experimental techniques related to neutron (Fission Chambers) and photon (TLD, OSLD)
- Education and training
- Open to international collaboration
EOLE and MINERVE Measurement capabilities

EOLE
- Single or cluster rod efficiency.
- Temperature coefficient.
- Void effects.
- Measurements in Subcritical conditions by MSM
- Fission rates by integral or individual peak γ-spectrometry
- Power peak in the core
- Spectral Indices
- Kinetics parameters
- Simple lattices to mock-up exp.

MINERVE
- Fission rates by integral or individual peak γ-spectrometry
- Spectral Indices
- Oscillation technique of sample for which we determine the reactivity.
- Calibration versus reference absorbers (10B, 6Li, Au) or fissile (235U)
- Activation of samples then individual peak γ-spectrometry

- Two reactors,
- Two control rooms but
- Same building,
- Same measurement room.
Homogeneous lattices: ±190 pcm for UO$_2$, ±290 pcm for MOX (1σ)
EXPERIMENTS IN EOLE: 1/3 MOXed PWR

MOCK-UP Cores
100% MOX-BWR

EPICURE UMZONE core

BASALA-H Core
PERLE for Heavy Reflector
GEN-3 reactor

FLUOLE for PWR Reflector
& Vessel fluence
GEN-2 reactor

<table>
<thead>
<tr>
<th>Uncertainty on Reflector saving (1σ)</th>
<th>H₂O</th>
<th>± 1.9 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWR</td>
<td>± 2.0 %</td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>± 2.7 %</td>
<td></td>
</tr>
</tbody>
</table>
MINERVE: Integral Capture cross-section measurements – Status on Mendeleïev table

Structural Materials

Moderators

Absorbers and poisons

Instrumentation

References

<table>
<thead>
<tr>
<th>Reference 1</th>
<th>Reference 2</th>
<th>Reference 3</th>
</tr>
</thead>
</table>

Heavy nuclides

BUC nuclides
Near future of EOLE and MINERVE facilities

EOLE:
- GEN3-PWR
- Massive use of Gd
- Heavy Reflector

MINERVE:
- GEN3-PWR
- Measurement of α factor (local/global signal)
- Calibration of instrumentation
- Experimental techniques benchmarking for future ZPRs
WHAT ABOUT THE FUTURE? Future of ZPR in France

- EOLE and MINERVE Facilities will stop their activities by the end of 2019

- A working group was settled in 2006-2009 to evaluate the opportunity to keep experimental capacities for Core physics studies
 ➔ Conclusion: France should keep experimental facilities for GEN-II / GEN-III (and GEN-IV)

- Industrial challenges for the next years
 - NPP « Life Extension » : 40y → 60y
 - Increase of cycle length: 12months → 18/24months
 - Increase of fuel burn-up: 40GWD/t → >60GWD/t
 - Criticality/Safety assessment related to Burn-Up Credit
 - Improvement in Nuclear Data knowledge
 - Innovative LWR designs (High conversion, SMR,...)
 - Innovative calculation schemes, physics coupling

 ➔ The CEA is investigating a new experimental Zero Power Facility ZEPHYR

ZEPHYR = Zero power Experimental Physics Reactor
ZEPHYR ambition is to keep all the functionalities and potentialities of EOLE and MINERVE, while extending them to:

- Doppler measurement of samples between $-200^\circ C < T < 2000^\circ C$
- Criticality/Safety assessment related to BUC
- Extension of irradiated fuel measurements to SFR (burnt fuel from PHENIX or from the future ASTRID industrial demonstrator)
- Modelling of core degradation on neutronics
- Dynamical measurements (vs quasi-statics in « traditional » ZPR)
- Coupled cores for Nuclear Data improvement (complementarity with MASURCA)
- Specific JHR device qualification if required

ZEPHYR would be a more international facility
- Extension of industrial partnerships with other countries

Preliminary studies of the building and core design have started in 2014
CONCLUSIONS

3 Keys Points to remind

- Zero Power Facilities: a key-role in the development / improvement of GEN-II, GEN-III and associated activities (storage, transportation, reprocessing)

- « Open » access to the EOLE and MINERVE still available up to 2019

- CEA would like to keep an experimental facility and is currently designing a new critical facility ZEPHYR
THANK YOU FOR YOUR ATTENTION
ANY QUESTIONS?