Kinetic parameters estimation in the RA-0 research reactor

P.A. Bellino A. Gomez

Experimental Reactor Physics Division
National Atomic Energy Commission, Buenos Aires, Argentina

IGORR 2014 / IAEA Technical Meeting
17-21 November 2014, Bariloche, Argentina
1 Introduction

2 Reactor power calibration

3 Subcritical measurements

4 Subcritical reactimeter

5 Conclusions
Several kinetic parameters were estimated in the RA-0 reactor

This work tries to summarize two weeks of experiences. Only the main results are presented here.

First part was done in the standard core configuration, with a critical reactor:
- Power calibration (requirement of the Regulatory Authority) and critical prompt decay constant α_c

Second part of the experiences was done in subcritical configurations:
- Application of the α-Feynman method with four neutron detectors
- Subcriticality level was modified in two ways: changing the level of the moderator and withdrawing a control rod
- Study of spatial effects present during the estimations

Implementation of a reactimeter for subcritical states
Several kinetic parameters were estimated in the RA-0 reactor. This work tries to summarize two weeks of experiences. Only the main results are presented here.

First part was done in the standard core configuration, with a critical reactor:
- Power calibration (requirement of the Regulatory Authority) and critical prompt decay constant α_c.

Second part of the experiences was done in subcritical configurations:
- Application of the α-Feynman method with four neutron detectors
- Subcriticality level was modified in two ways: changing the level of the moderator and withdrawing a control rod
- Study of spatial effects present during the estimations

Implementation of a reactimeter for subcritical states.
Several kinetic parameters were estimated in the RA-0 reactor.

This work tries to summarize two weeks of experiences. Only the main results are presented here.

First part was done in the standard core configuration, with a critical reactor:

- Power calibration (requirement of the Regulatory Authority) and critical prompt decay constant α_c

Second part of the experiences was done in subcritical configurations:

- Application of the α-Feynman method with four neutron detectors
- Subcriticality level was modified in two ways: changing the level of the moderator and withdrawing a control rod
- Study of spatial effects present during the estimations

Implementation of a reactimeter for subcritical states
Several kinetic parameters were estimated in the RA-0 reactor

This work tries to summarize two weeks of experiences. Only the main results are presented here.

First part was done in the standard core configuration, with a critical reactor:
- Power calibration (requirement of the Regulatory Authority) and critical prompt decay constant α_c

Second part of the experiences was done in subcritical configurations:
- Application of the α-Feynman method with four neutron detectors
- Subcriticality level was modified in two ways: changing the level of the moderator and withdrawing a control rod
- Study of spatial effects present during the estimations

Implementation of a reactimeter for subcritical states
Several kinetic parameters were estimated in the RA-0 reactor. This work tries to summarize two weeks of experiences. Only the main results are presented here.

First part was done in the standard core configuration, with a critical reactor:

- Power calibration (requirement of the Regulatory Authority) and critical prompt decay constant α_c

Second part of the experiences was done in subcritical configurations:

- Application of the α-Feynman method with four neutron detectors
 - Subcriticality level was modified in two ways: changing the level of the moderator and withdrawing a control rod
 - Study of spatial effects present during the estimations

Implementation of a reactimeter for subcritical states
Several kinetic parameters were estimated in the RA-0 reactor.

This work tries to summarize two weeks of experiences. Only the main results are presented here.

First part was done in the standard core configuration, with a critical reactor:
- Power calibration (requirement of the Regulatory Authority) and critical prompt decay constant α_c.

Second part of the experiences was done in subcritical configurations:
- Application of the α-Feynman method with four neutron detectors.
 - Subcriticality level was modified in two ways: changing the level of the moderator and withdrawing a control rod.
 - Study of spatial effects present during the estimations.
- Implementation of a reactimeter for subcritical states.
Several kinetic parameters were estimated in the RA-0 reactor.

This work tries to summarize two weeks of experiences. Only the main results are presented here.

First part was done in the standard core configuration, with a critical reactor:
- Power calibration (requirement of the Regulatory Authority) and critical prompt decay constant α_c

Second part of the experiences was done in subcritical configurations:
- Application of the α-Feynman method with four neutron detectors
- Subcriticality level was modified in two ways: changing the level of the moderator and withdrawing a control rod
- Study of spatial effects present during the estimations

Implementation of a reactimeter for subcritical states
Several kinetic parameters were estimated in the RA-0 reactor. This work tries to summarize two weeks of experiences. Only the main results are presented here.

First part was done in the standard core configuration, with a critical reactor:
- Power calibration (requirement of the Regulatory Authority) and critical prompt decay constant α_c

Second part of the experiences was done in subcritical configurations:
- Application of the α-Feynman method with four neutron detectors
- Subcriticality level was modified in two ways: changing the level of the moderator and withdrawing a control rod
- Study of spatial effects present during the estimations

Implementation of a reactimeter for subcritical states
Several kinetic parameters were estimated in the RA-0 reactor

This work tries to summarize two weeks of experiences. Only the main results are presented here.

First part was done in the standard core configuration, with a critical reactor:
- Power calibration (requirement of the Regulatory Authority) and critical prompt decay constant α_c

Second part of the experiences was done in subcritical configurations:
- Application of the α-Feynman method with four neutron detectors
- Subcriticality level was modified in two ways: changing the level of the moderator and withdrawing a control rod
- Study of spatial effects present during the estimations

Implementation of a reactimeter for subcritical states
Introduction

RA-0 Reactor location

Argentinian critical assembly located in the City of Córdoba
Introduction

RA-0 Reactor location

Belongs to the National University of Córdoba and CNEA
Introduction

RA-0 reactor

[Image of RA-0 reactor]
Introduction

RA-0 reactor
Contents

1 Introduction

2 Reactor power calibration

3 Subcritical measurements

4 Subcritical reactimeter

5 Conclusions
Reactor power calibration

Description

- Based on the spectral analysis of the neutron fluctuations
- A reference measurement system is used for the neutron noise technique
- A linear power range channel of the reactor is calibrated (current to power factor)
- The linearity of the power range channel was checked
- Measurements were done in a steady state and critical reactor
- Five power levels from 0.1 W up to 10 W

Prompt critical decay constant

In each measurement the α_c was also estimated
Reactor power calibration

Description

- Based on the spectral analysis of the neutron fluctuations

- A reference measurement system is used for the neutron noise technique

 - A linear power range channel of the reactor is calibrated (current to power factor)

 - The linearity of the power range channel was checked

 - Measurements were done in a steady state and critical reactor

 - Five power levels from $0.1 \, W$ up to $10 \, W$

- Prompt critical decay constant

 In each measurement the α_c was also estimated
Reactor power calibration

Description

- Based on the spectral analysis of the neutron fluctuations
- A reference measurement system is used for the neutron noise technique
- A linear power range channel of the reactor is calibrated (current to power factor)
- The linearity of the power range channel was checked
- Measurements were done in a steady state and critical reactor
- Five power levels from 0.1 W up to 10 W

Prompt critical decay constant

In each measurement the α_c was also estimated
Reactor power calibration

Description

- Based on the spectral analysis of the neutron fluctuations
- A reference measurement system is used for the neutron noise technique
- A linear power range channel of the reactor is calibrated (current to power factor)
- The linearity of the power range channel was checked
- Measurements were done in a steady state and critical reactor
- Five power levels from 0.1 W up to 10 W

Prompt critical decay constant

In each measurement the α_c was also estimated
Reactor power calibration

Description

- Based on the spectral analysis of the neutron fluctuations
- A reference measurement system is used for the neutron noise technique
- A linear power range channel of the reactor is calibrated (current to power factor)
- The linearity of the power range channel was checked
- Measurements were done in a steady state and critical reactor
- Five power levels from 0.1 W up to 10 W

Prompt critical decay constant

In each measurement the α_c was also estimated
Reactor power calibration

Description

- Based on the spectral analysis of the neutron fluctuations
- A reference measurement system is used for the neutron noise technique
- A linear power range channel of the reactor is calibrated (current to power factor)
- The linearity of the power range channel was checked
- Measurements were done in a steady state and critical reactor
- Five power levels from 0.1 W up to 10 W

Prompt critical decay constant

In each measurement the α_c was also estimated
Reactor power calibration

Description

- Based on the spectral analysis of the neutron fluctuations
- A reference measurement system is used for the neutron noise technique
- A linear power range channel of the reactor is calibrated (current to power factor)
- The linearity of the power range channel was checked
- Measurements were done in a steady state and critical reactor
- Five power levels from 0.1 W up to 10 W

Prompt critical decay constant

In each measurement the α_c was also estimated
Normalized PSD (fitting parameters in red)

\[NPSD(\omega) = \frac{PSD(\omega)}{\langle I \rangle^2} = \left[\frac{2D(1 - \beta)L_1E_f}{\beta^2P} \right] \frac{1}{1 + \left(\frac{\omega}{\alpha_c} \right)^2} + W \]

- **D**: Diven factor
- **\(E_f\)**: Mean energy released per fission
- **\(L_1\)**: Correction factor due to reactor geometry
- **\(P\)**: Reactor power
- **\(\alpha_c\)**: Critical prompt neutron decay constant
- **\(W\)**: Non-correlated white noise
Reactor power calibration

RA-0 reactor core

Console

CR1
CR2
CR3
CR4

Fuel element
Graphite
Control rod
Irradiation channels
CI1 Reference CIC
N6 Reactor CIC

References
Reactor power calibration

Power spectral density

∆f = 40 Hz

\[\alpha_c = (61 \pm 1) \text{s}^{-1} \]
\[p = (0.125 \pm 0.006) \text{W} \]

∆f = 200 Hz

\[\alpha_c = (60 \pm 2) \text{s}^{-1} \]
\[p = (9.9 \pm 0.9) \text{W} \]

Example

PSD obtained in two different bandwidths. Reactor power was \(\approx 0.1 \text{ W} \) (left) and \(\approx 10 \text{ W} \) (right).
Reactor power calibration

Power spectral density

$\Delta f = 40 \text{ Hz}$

$\Delta f = 200 \text{ Hz}$

Estimated values:

$\alpha_c = (61 \pm 1) \text{s}^{-1}$

$p = (0.125 \pm 0.006) \text{W}$

$\alpha_c = (60 \pm 2) \text{s}^{-1}$

$p = (9.9 \pm 0.9) \text{W}$

Estimation of α_c

$\langle \alpha_c \rangle = (65.2 \pm 0.4) \text{1/s}$
Reactor power calibration

Power spectral density

N6 system linearity

N6 system calibration

Calibration factor for N6 system

\[f_{N6} = (1.37 \pm 0.02) \times 10^7 \text{W} / \text{A} \]
Subcritical measurements

Contents

1 Introduction

2 Reactor power calibration

3 Subcritical measurements

4 Subcritical reactimeter

5 Conclusions
Subcritical measurements

α-Feynman method

- Used for the estimation of the α in subcritical stationary states (with an external neutron source)
- Based on the count statistics of a neutron detector

If no multiplying media were present, the detected counts N in τ would follow a Poisson process: $\langle N^2 \rangle - \langle N \rangle^2 = \langle N \rangle$

- The fission process produces an increment of the relative variance
- The increment depends on the time interval τ
Subcritical measurements

\(\alpha\)-Feynman method

- Used for the estimation of the \(\alpha\) in subcritical stationary states (with an external neutron source)
- Based on the count statistics of a neutron detector

If no multiplying media were present, the detected counts \(N\) in \(\tau\) would follow a Poisson process: \(\langle N^2 \rangle - \langle N \rangle^2 = \langle N \rangle\)
- The fission process produces an increment of the relative variance
- The increment depends on the time interval \(\tau\)
Subcritical measurements

α-Feynman method

- Used for the estimation of the α in subcritical stationary states (with an external neutron source)
- Based on the count statistics of a neutron detector

If no multiplying media were present, the detected counts N in τ would follow a Poisson process: $\langle N^2 \rangle - \langle N \rangle^2 = \langle N \rangle$

- The fission process produces an increment of the relative variance
- The increment depends on the time interval τ
Subcritical measurements

α-Feynman method

- Used for the estimation of the α in subcritical stationary states (with an external neutron source)
- Based on the count statistics of a neutron detector

If no multiplying media were present, the detected counts N in τ would follow a Poisson process: $\langle N^2 \rangle - \langle N \rangle^2 = \langle N \rangle$

- The fission process produces an increment of the relative variance
- The increment depends on the time interval τ
Subcritical measurements

α-Feynman method

- Used for the estimation of the α in subcritical stationary states (with an external neutron source)
- Based on the count statistics of a neutron detector

If no multiplying media were present, the detected counts N in τ would follow a Poisson process: $\langle N^2 \rangle - \langle N \rangle^2 = \langle N \rangle$

The fission process produces an increment of the relative variance

The increment depends on the time interval τ
Used for the estimation of the α in subcritical stationary states (with an external neutron source)

Based on the count statistics of a neutron detector

If no multiplying media were present, the detected counts N in τ would follow a Poisson process: $\langle N^2 \rangle - \langle N \rangle^2 = \langle N \rangle$

The fission process produces an increment of the relative variance

The increment depends on the time interval τ
Subcritical measurements

α-Feynman method

$Y(\tau) = \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle} - 1 = \frac{\epsilon D}{\alpha^2 \Lambda^2} \left(1 - \frac{1 - e^{-\alpha \tau}}{\alpha \tau} \right) - 2Rd$

N: Counts during τ
α: Prompt neutron decay constant
D: Diven factor
Λ: Neutron generation time
ϵ: Absolute efficiency

- Other corrections are neglected (finite number of samples, delayed neutrons, etc.). They did not improve the results
- Covariance method was also applied between two detectors
Subcritical measurements

α-Feynman method

α-Feynman method with dead time correction

\[Y(\tau) = \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle} - 1 = \frac{\epsilon D}{\alpha^2 \Lambda^2} \left(1 - \frac{1 - e^{-\alpha \tau}}{\alpha \tau} \right) - 2Rd \]

N: Counts during τ

α: Prompt neutron decay constant

D: Diven factor

Λ: Neutron generation time

ϵ: Absolute efficiency

d: Dead time

R: Mean count rate

- Other corrections are neglected (finite number of samples, delayed neutrons, etc.). They did not improve the results
- Covariance method was also applied between two detectors
Subcritical measurements

α-Feynman method

\[Y(\tau) = \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle} - 1 = \frac{\epsilon D}{\alpha^2 \Lambda^2} \left(1 - \frac{1 - e^{-\alpha \tau}}{\alpha \tau} \right) - 2Rd \]

- \(N \): Counts during \(\tau \)
- \(\alpha \): Prompt neutron decay constant
- \(D \): Diven factor
- \(\Lambda \): Neutron generation time
- \(\epsilon \): Absolute efficiency
- \(d \): Dead time
- \(R \): Mean count rate

Other corrections are neglected (finite number of samples, delayed neutrons, etc.). They did not improve the results.

Covariance method was also applied between two detectors.
Subcritical measurements

Implementation of the method

- Time-stamping system acquiring simultaneously up to three detectors (TTL pulses)
- Any neutron noise method can be applied (\(\alpha\)-Rossi, \(\alpha\)-Feynman, spectral, covariance, etc.)
- The \(\alpha\)-Feynman method was used with the bunching technique, for reducing measurement time

Each measurement took \(\sim 10m\) and the time interval ranges from \(\tau = 50 \mu s\) up to \(\tau = 50 ms\). Two series were made at each level for collecting data from the four detectors.
Using the α values obtained in subcritical states, the value α_c can be estimated. Using its definition $\alpha_c = 1/\Lambda^*$, with the relations:

$$\alpha = \frac{1 - \$}{\Lambda^*} \quad \text{and} \quad R = -\frac{\Lambda^* \tilde{Q}}{\$}$$

The following expressions can be deduced:

Linear relationship between α and $1/R$

$$\alpha(R) = \frac{\tilde{Q}}{R} + \alpha_c$$

Reactivity estimation

$$\$ = 1 - \alpha \Lambda^* = 1 - \frac{\alpha}{\alpha_c}$$
Subcritical measurements

Estimation of \(\alpha_c \)

Using the \(\alpha \) values obtained in subcritical states, the value \(\alpha_c \) can be estimated. Using its definition \(\alpha_c = 1/\Lambda^* \), with the relations:

\[
\alpha = \frac{1 - \$}{\Lambda^*} \quad \text{and} \quad R = -\frac{\Lambda^* \tilde{Q}}{\$}
\]

The following expressions can be deduced:

Linear relationship between \(\alpha \) and \(1/R \)

\[
\alpha(R) = \frac{\tilde{Q}}{R} + \alpha_c
\]

Reactivity estimation

\[
\$ = 1 - \alpha\Lambda^* = 1 - \frac{\alpha}{\alpha_c}
\]
Subcritical measurements

Estimation of α_c

Using the α values obtained in subcritical states, the value α_c can be estimated. Using its definition $\alpha_c = 1/\Lambda^*$, with the relations:

$$\alpha = 1 - \frac{\$}{\Lambda^*} \quad \text{and} \quad R = -\frac{\Lambda^* \tilde{Q}}{\$}$$

The following expressions can be deduced:

Linear relationship between α and $1/R$

$$\alpha(R) = \frac{\tilde{Q}}{R} + \alpha_c$$

Reactivity estimation

$$\$ = 1 - \alpha \Lambda^* = 1 - \frac{\alpha}{\alpha_c}$$
Estimation of α_c

Using the α values obtained in subcritical states, the value α_c can be estimated. Using its definition $\alpha_c = 1/\Lambda^*$, with the relations:

$$\alpha = \frac{1 - \Lambda^*}{\tilde{Q}}$$

and

$$R = -\frac{\Lambda^* \tilde{Q}}{\$}$$

The following expressions can be deduced:

Linear relationship between α and $1/R$

$$\alpha(R) = \frac{\tilde{Q}}{R} + \alpha_c$$

Reactivity estimation

$$\$ = 1 - \alpha \Lambda^* = 1 - \frac{\alpha}{\alpha_c}$$
Subcritical measurements

Estimation of α_c

Using the α values obtained in subcritical states, the value α_c can be estimated. Using its definition $\alpha_c = 1/\Lambda^*$, with the relations:

$$\alpha = 1 - \frac{\Lambda^*}{\tilde{Q}} \quad \text{and} \quad R = -\frac{\Lambda^* \tilde{Q}}{\$}$$

The following expressions can be deduced:

Linear relationship between α and $1/R$

$$\alpha(R) = \frac{\tilde{Q}}{R} + \alpha_c$$

Reactivity estimation

$$\$ = 1 - \alpha \Lambda^* = 1 - \frac{\alpha}{\alpha_c}$$
Subcritical measurements

Location of detectors

Console

D1 - 3He 6 cps/nv
D2 - 3He 6 cps/nv
D3 - 3He 44 cps/nv
D4 - BF$_{3}$ 7.4 cps/nv

References

- Fuel element
- Graphite
- Control rod
- Irradiation channels

- D1 - 3He 6 cps/nv
- D2 - 3He 6 cps/nv
- D3 - 3He 44 cps/nv
- D4 - BF$_{3}$ 7.4 cps/nv
Subcritical measurements

Control rod extraction

- CR1 from 0 % to 100 % of extraction while the rest of the control rods remained completely withdrawn
- Moderator height at its maximum level $\sim 94 \text{ cm}$
The moderator height was increased from $H = 40\, \text{cm}$ (midplane of the core) up to $H = 70\, \text{cm}$ (∼ infinite)

All control rods remained completely withdrawn
Subcritical measurements

\(\alpha_c \) estimation

Determination of the critical prompt decay constant from the two previous experiences

<table>
<thead>
<tr>
<th>Detector</th>
<th>(\alpha_c [1/s])</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR1 extraction</td>
<td>Moderator level</td>
</tr>
<tr>
<td>D1</td>
<td>63.26(7)</td>
</tr>
<tr>
<td>D2</td>
<td>62.70(8)</td>
</tr>
<tr>
<td>D3</td>
<td>57.4(1)</td>
</tr>
<tr>
<td>D4</td>
<td>62.3(1)</td>
</tr>
</tbody>
</table>

With a critical reactor, the value obtained was \(\alpha_c = 65.2(4) \text{1/s} \) (different detector and different core configurations).
Subcritical measurements

α_c estimation

Determination of the critical prompt decay constant from the two previous experiences

<table>
<thead>
<tr>
<th>Detector</th>
<th>α_c [1/s]</th>
<th>CR1 extraction</th>
<th>Moderator level</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>63.26(7)</td>
<td></td>
<td>62.1(1)</td>
</tr>
<tr>
<td>D2</td>
<td>62.70(8)</td>
<td></td>
<td>64.8(1)</td>
</tr>
<tr>
<td>D3</td>
<td>57.4(1)</td>
<td></td>
<td>58.9(2)</td>
</tr>
<tr>
<td>D4</td>
<td>62.3(1)</td>
<td></td>
<td>62.7(2)</td>
</tr>
</tbody>
</table>

With a critical reactor, the value obtained was $\alpha_c = 65.2(4)$ 1/s (different detector and different core configurations).
It was observed that some of the α estimations depended on the location of the detector.

A new core configuration (Core 15) was arranged to study these effects. The central ring of fuel elements was removed.

Reactor with two separate zones (theory of coupled reactors)
Subcritical measurements

Spatial effects

- It was observed that some of the α estimations depended on the location of the detector.
- A new core configuration (Core 15) was arranged to study these effects. The central ring of fuel elements was removed.
- Reactor with two separate zones (theory of coupled reactors)
Subcritical measurements

Spatial effects

- It was observed that some of the α estimations depended on the location of the detector.
- A new core configuration (Core 15) was arranged to study these effects. The central ring of fuel elements was removed.
- Reactor with two separate zones (theory of coupled reactors)
Subcritical measurements

Spatial effects

- It was observed that some of the α estimations depended on the location of the detector.
- A new core configuration (Core 15) was arranged to study these effects. The central ring of fuel elements was removed.
- Reactor with two separate zones (theory of coupled reactors)
Subcritical measurements

Spatial effects

- Detectors D1 (inner reflector) and D2 (outer reflector) were compared.
- The relative difference was obtained: \(\frac{\alpha(D1) - \alpha(D2)}{\alpha(D1)} \)
- Measurements were done at different heights of the moderator and compared to the previous ones.

As expected, the spatial effects were increased with the new configuration. Future work will analyze the results using the coupled reactor theory.
Contents

1 Introduction

2 Reactor power calibration

3 Subcritical measurements

4 Subcritical reactimeter

5 Conclusions
A subcritical reactimeter was implemented in one of the start-up channels of the reactor (N2).

It uses the inverse kinetic equation:

$$\phi(t) = 1 + \frac{\Lambda^*}{R(t)} \left[\frac{dR}{dt}(t) - \sum_{i=1}^{6} \lambda_i C_i(t) - \tilde{Q} \right]$$

The neutron source value \(\tilde{Q}\) must be estimated firstly (is detector dependant)

The source was obtained with the Least Squares Inverse Kinetic Method (LSIKM)

This experience was done in the Core 14A and detectors D1, D2 and D3 were removed (normal operation configuration)
A subcritical reactimeter was implemented in one of the start-up channels of the reactor (N2).

It uses the inverse kinetic equation:

$$$(t) = 1 + \frac{\Lambda^*}{R(t)} \left[\frac{dR}{dt} (t) - \sum_{i=1}^{6} \lambda_i C_i(t) - \tilde{Q} \right]$$$

The neutron source value \tilde{Q} must be estimated firstly (is detector dependant)

The source was obtained with the Least Squares Inverse Kinetic Method (LSIKM)

This experience was done in the Core 14A and detectors D1, D2 and D3 were removed (normal operation configuration)
A subcritical reactimeter was implemented in one of the start-up channels of the reactor (N2).

It uses the inverse kinetic equation:

$$\frac{\Lambda^*}{R(t)} \left[\frac{dR}{dt}(t) - \sum_{i=1}^{6} \lambda_i C_i(t) - \tilde{Q} \right]$$

The neutron source value \tilde{Q} must be estimated firstly (is detector dependant)

The source was obtained with the Least Squares Inverse Kinetic Method (LSIKM)

This experience was done in the Core 14A and detectors D1, D2 and D3 were removed (normal operation configuration)
A subcritical reactimeter was implemented in one of the start-up channels of the reactor (N2).

It uses the inverse kinetic equation:

\[
\psi(t) = 1 + \frac{\Lambda^*}{R(t)} \left[\frac{dR}{dt}(t) - \sum_{i=1}^{6} \lambda_i C_i(t) - \tilde{Q} \right]
\]

The neutron source value \(\tilde{Q} \) must be estimated firstly (is detector dependant).

The source was obtained with the Least Squares Inverse Kinetic Method (LSIKM).

This experience was done in the Core 14A and detectors D1, D2 and D3 were removed (normal operation configuration).
A subcritical reactimeter was implemented in one of the start-up channels of the reactor (N2).

It uses the inverse kinetic equation:

\[
$t(t) = 1 + \frac{\Lambda^*}{R(t)} \left[\frac{dR}{dt}(t) - \sum_{i=1}^{6} \lambda_i C_i(t) - \tilde{Q} \right]
\]

The neutron source value \(\tilde{Q}\) must be estimated firstly (is detector dependant)

The source was obtained with the Least Squares Inverse Kinetic Method (LSIKM)

This experience was done in the Core 14A and detectors D1, D2 and D3 were removed (normal operation configuration)
A subcritical reactimeter was implemented in one of the start-up channels of the reactor (N2).

It uses the inverse kinetic equation:

$$\ell(t) = 1 + \frac{\Lambda^*}{R(t)} \left[\frac{dR}{dt}(t) - \sum_{i=1}^{6} \lambda_i C_i(t) - \tilde{Q} \right]$$

The neutron source value \tilde{Q} must be estimated firstly (is detector dependant).

The source was obtained with the Least Squares Inverse Kinetic Method (LSIKM).

This experience was done in the Core 14A and detectors D1, D2 and D3 were removed (normal operation configuration).
Validation of the subcritical reactimeter

With the value of \tilde{Q} the digital reactimeter was implemented in the monitoring and acquisition system of the reactor (SEAD).

Validation was done using another method for the reactivity estimation: α-Feynman.

It was done in a configuration different from the used in the LSIKM: changing the moderator level (H) with all control rods withdrawn.

<table>
<thead>
<tr>
<th>H [cm]</th>
<th>α-Feynman</th>
<th>SEAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\tilde{Q} [cps/s]</td>
<td>π</td>
</tr>
<tr>
<td>54,0</td>
<td>32000(4000)</td>
<td>$-7.1(4)$</td>
</tr>
<tr>
<td>59,6</td>
<td>28000(1600)</td>
<td>$-1.43(1)$</td>
</tr>
<tr>
<td>63,5</td>
<td>25000(900)</td>
<td>$-0.442(6)$</td>
</tr>
</tbody>
</table>
Subcritical reactimeter

Validation of the subcritical reactimeter

With the value of \tilde{Q} the digital reactimeter was implemented in the monitoring and acquisition system of the reactor (SEAD).

Validation was done using another method for the reactivity estimation: α-Feynman.

It was done in a configuration different from the used in the LSIKM: changing the moderator level (H) with all control rods withdrawn.

<table>
<thead>
<tr>
<th>H [cm]</th>
<th>α-Feynman \tilde{Q} [cps/s]</th>
<th>SEAD \tilde{Q} [cps/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>54,0</td>
<td>32000(4000) $-7,1(4)$</td>
<td>$-5,8$</td>
</tr>
<tr>
<td>59,6</td>
<td>28000(1600) $-1,43(1)$</td>
<td>$-1,4$</td>
</tr>
<tr>
<td>63,5</td>
<td>25000(900) $-0,442(6)$</td>
<td>$-0,45$</td>
</tr>
</tbody>
</table>
With the value of \tilde{Q} the digital reactimeter was implemented in the monitoring and acquisition system of the reactor (SEAD).

Validation was done using another method for the reactivity estimation: α-Feynman.

It was done in a configuration different from the used in the LSIKM: changing the moderator level (H) with all control rods withdrawn.

<table>
<thead>
<tr>
<th>H [cm]</th>
<th>α-Feynman</th>
<th>SEAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\tilde{Q} [cps/s]</td>
<td>Δ</td>
</tr>
<tr>
<td>54,0</td>
<td>32000(4000)</td>
<td>$-7.1(4)$</td>
</tr>
<tr>
<td>59.6</td>
<td>28000(1600)</td>
<td>$-1.43(1)$</td>
</tr>
<tr>
<td>63.5</td>
<td>25000(900)</td>
<td>$-0.442(6)$</td>
</tr>
</tbody>
</table>
Validation of the subcritical reactimeter

With the value of \tilde{Q} the digital reactimeter was implemented in the monitoring and acquisition system of the reactor (SEAD).

Validation was done using another method for the reactivity estimation: α-Feynman.

It was done in a configuration different from the used in the LSIKM: changing the moderator level (H) with all control rods withdrawn.

<table>
<thead>
<tr>
<th>H [cm]</th>
<th>α-Feynman</th>
<th>SEAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\tilde{Q} [cps/s]</td>
<td>$$</td>
</tr>
<tr>
<td>54,0</td>
<td>32000(4000)</td>
<td>-7,1(4)</td>
</tr>
<tr>
<td>59,6</td>
<td>28000(1600)</td>
<td>-1,43(1)</td>
</tr>
<tr>
<td>63,5</td>
<td>25000(900)</td>
<td>-0,442(6)</td>
</tr>
</tbody>
</table>
Conclusions

Contents

1 Introduction

2 Reactor power calibration

3 Subcritical measurements

4 Subcritical reactimeter

5 Conclusions
Conclusions

Reactor power calibration using the neutron noise method. Linearity of power range channel checked in the whole range of operation. Determination of the α_c value

- Subcritical measurements in different configurations using the α-Feynman method with four detectors
- Reactivity worth of control rods and moderator height
- Estimation of the α_c value with measurements performed in subcritical states
- First steps in studying spatial effects during the kinetic parameters estimation
- Subcriticality on-line monitoring implemented on the RA-0 reactor
- The experience gained was applied in the physical measurement at zero power during the start-up of Atucha II Nuclear Power Plant: digital reactiometer with pulse and analogue signals
Conclusions

- Reactor power calibration using the neutron noise method. Linearity of power range channel checked in the whole range of operation. Determination of the α_c value
- Subcritical measurements in different configurations using the α-Feynman method with four detectors
- Reactivity worth of control rods and moderator height
- Estimation of the α_c value with measurements performed in subcritical states
- First steps in studying spatial effects during the kinetic parameters estimation
- Subcriticality on-line monitoring implemented on the RA-0 reactor
- The experience gained was applied in the physical measurement at zero power during the start-up of Atucha II Nuclear Power Plant: digital reactimeter with pulse and analogue signals
Conclusions

- Reactor power calibration using the neutron noise method. Linearity of power range channel checked in the whole range of operation. Determination of the α_c value
- Subcritical measurements in different configurations using the α-Feynman method with four detectors
- Reactivity worth of control rods and moderator height
- Estimation of the α_c value with measurements performed in subcritical states
- First steps in studying spatial effects during the kinetic parameters estimation
- Subcriticality on-line monitoring implemented on the RA-0 reactor
- The experience gained was applied in the physical measurement at zero power during the start-up of Atucha II Nuclear Power Plant: digital reactimeter with pulse and analogue signals
Conclusions

- Reactor power calibration using the neutron noise method. Linearity of power range channel checked in the whole range of operation.
- Determination of the α_c value
- Subcritical measurements in different configurations using the α-Feynman method with four detectors
- Reactivity worth of control rods and moderator height
- Estimation of the α_c value with measurements performed in subcritical states
- First steps in studying spatial effects during the kinetic parameters estimation
- Subcriticality on-line monitoring implemented on the RA-0 reactor
- The experience gained was applied in the physical measurement at zero power during the start-up of Atucha II Nuclear Power Plant: digital reactimeter with pulse and analogue signals
Conclusions

- Reactor power calibration using the neutron noise method. Linearity of power range channel checked in the whole range of operation. Determination of the α_c value.
- Subcritical measurements in different configurations using the α-Feynman method with four detectors.
- Reactivity worth of control rods and moderator height.
- Estimation of the α_c value with measurements performed in subcritical states.
- First steps in studying spatial effects during the kinetic parameters estimation.
- Subcriticality on-line monitoring implemented on the RA-0 reactor.
- The experience gained was applied in the physical measurement at zero power during the start-up of Atucha II Nuclear Power Plant: digital reactimeter with pulse and analogue signals.
Conclusions

Reactor power calibration using the neutron noise method. Linearity of power range channel checked in the whole range of operation. Determination of the α_c value

Subcritical measurements in different configurations using the α-Feynman method with four detectors

Rectivity worth of control rods and moderator height

Estimation of the α_c value with measurements performed in subcritical states

First steps in studying spatial effects during the kinetic parameters estimation

Subcriticality on-line monitoring implemented on the RA-0 reactor

The experience gained was applied in the physical measurement at zero power during the start-up of Atucha II Nuclear Power Plant: digital reactimeter with pulse and analogue signals
Conclusions

- Reactor power calibration using the neutron noise method. Linearity of power range channel checked in the whole range of operation. Determination of the α_c value
- Subcritical measurements in different configurations using the α-Feynman method with four detectors
- Reactivity worth of control rods and moderator height
- Estimation of the α_c value with measurements performed in subcritical states
- First steps in studying spatial effects during the kinetic parameters estimation
- Subcriticality on-line monitoring implemented on the RA-0 reactor
- The experience gained was applied in the physical measurement at zero power during the start-up of Atucha II Nuclear Power Plant: digital reactimeter with pulse and analogue signals
Acknowledgement

To all the RA-0 staff members who cooperated in this large and laborious experiments.
Thank you for your attention
Any questions?
Appendix

RA-0 characteristics

Characteristics

- **Tank type reactor with graphite reflector**
- Fuel rods made of LEU UO$_2$ (20%)
- Light water moderated and refrigerated (natural convection)
- Four cadmium control rods with stainless steel cladding
- Nominal power of 1 W with transients of 10 W
- Thermal neutron flux $\sim 10^7$ $1/cm^2s$

Utilization

- Teaching and training
- Activation analysis
- Nuclear instrumentation test
Appendix

RA-0 characteristics

Characteristics

- Tank type reactor with graphite reflector
- Fuel rods made of LEU UO$_2$ (20%)
- Light water moderated and refrigerated (natural convection)
- Four cadmium control rods with stainless steel cladding
- Nominal power of 1 W with transients of 10 W
- Thermal neutron flux $\sim 10^7$ $1/cm^2$s

Utilization

- Teaching and training
- Activation analysis
- Nuclear instrumentation test
RA-0 characteristics

Characteristics

- Tank type reactor with graphite reflector
- Fuel rods made of LEU UO$_2$ (20%)
- Light water moderated and refrigerated (natural convection)
- Four cadmium control rods with stainless steel cladding
- Nominal power of 1 W with transients of 10 W
- Thermal neutron flux $\sim 10^7$ 1/cm^2s

Utilization

- Teaching and training
- Activation analysis
- Nuclear instrumentation test
Appendix

RA-0 characteristics

Characteristics

- Tank type reactor with graphite reflector
- Fuel rods made of LEU UO$_2$ (20%)
- Light water moderated and refrigerated (natural convection)
- Four cadmium control rods with stainless steel cladding
- Nominal power of 1 W with transients of 10 W
- Thermal neutron flux $\sim 10^7$ 1/cm^2s

Utilization

- Teaching and training
- Activation analysis
- Nuclear instrumentation test
Appendix

RA-0 characteristics

Characteristics

- Tank type reactor with graphite reflector
- Fuel rods made of LEU UO$_2$ (20%)
- Light water moderated and refrigerated (natural convection)
- Four cadmium control rods with stainless steel cladding

Nominal power of 1 W with transients of 10 W

- Thermal neutron flux $\sim 10^7$ $1/cm^2s$

Utilization

- Teaching and training
- Activation analysis
- Nuclear instrumentation test
Characteristics

- Tank type reactor with graphite reflector
- Fuel rods made of LEU UO$_2$ (20%)
- Light water moderated and refrigerated (natural convection)
- Four cadmium control rods with stainless steel cladding
- Nominal power of 1 W with transients of 10 W
- Thermal neutron flux $\sim 10^7$ 1/cm2/s

Utilization

- Teaching and training
- Activation analysis
- Nuclear instrumentation test
RA-0 characteristics

Characteristics

- Tank type reactor with graphite reflector
- Fuel rods made of LEU UO$_2$ (20%)
- Light water moderated and refrigerated (natural convection)
- Four cadmium control rods with stainless steel cladding
- Nominal power of 1 W with transients of 10 W
- Thermal neutron flux $\sim 10^7 1/cm^2s$

Utilization

- Teaching and training
- Activation analysis
- Nuclear instrumentation test
Appendix

RA-0 characteristics

Characteristics

- Tank type reactor with graphite reflector
- Fuel rods made of LEU UO₂ (20%)
- Light water moderated and refrigerated (natural convection)
- Four cadmium control rods with stainless steel cladding
- Nominal power of 1 W with transients of 10 W
- Thermal neutron flux \(\sim 10^7 \text{ 1/cm}^2\text{s} \)

Utilization

- Teaching and training
- Activation analysis
- Nuclear instrumentation test

Kinetic parameters estimation in the RA-0 research reactor
RA-0 characteristics

Characteristics

- Tank type reactor with graphite reflector
- Fuel rods made of LEU UO$_2$ (20%)
- Light water moderated and refrigerated (natural convection)
- Four cadmium control rods with stainless steel cladding
- Nominal power of 1 W with transients of 10 W
- Thermal neutron flux $\sim 10^7$ $1/cm^2s$

Utilization

- Teaching and training
- Activation analysis
- Nuclear instrumentation test
Current from the detector is divided into its mean and fluctuating part. The last one is amplified and filtered. Two bandwidths are used: 40 Hz and 200 Hz.
Bunching technique

Time-stamped pulse train

Counts in $\tau = T_0$

<table>
<thead>
<tr>
<th>Time</th>
<th>0</th>
<th>T₀</th>
<th>2T₀</th>
<th>3T₀</th>
<th>4T₀</th>
<th>5T₀</th>
<th>6T₀</th>
<th>7T₀</th>
<th>8T₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Counts in $\tau = 2T_0$

<table>
<thead>
<tr>
<th>Time</th>
<th>0</th>
<th>2T₀</th>
<th>4T₀</th>
<th>6T₀</th>
<th>8T₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Counts in $\tau = 3T_0$

<table>
<thead>
<tr>
<th>Time</th>
<th>0</th>
<th>3T₀</th>
<th>6T₀</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Counts in $\tau = 4T_0$

<table>
<thead>
<tr>
<th>Time</th>
<th>0</th>
<th>4T₀</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>4</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix

Moderator level

Midplane of the core at \(H = 37 \text{ cm} \)
Efficiency of the detectors

Change in the efficiency of the detectors for different moderator levels
Appendix

Least Squares Inverse Kinetic Method

This method is used for the determination of the neutron source value (for a given detector). Defining a new variable as

\[D(t) = \frac{dR}{dt}(t) - \sum_{i=1}^{6} \lambda_i \tilde{C}_i(t) \]

the delayed evolution after the rod-drop takes the linear form:

\[R(t) = \frac{\Lambda^*}{\$f - 1} D(t) - \frac{\Lambda^* \tilde{Q}}{\$f - 1} \]

where $\$f$ is the reactivity of the final state. From a linear fit of the $R(t)$ vs. $D(t)$ data, the parameters \tilde{Q} and $\$f$ are obtained.
Appendix

Least Squares Inverse Kinetic Method

- Method used for estimation of the neutron source
- Linearization of the delayed evolution during a rod-drop between two subcritical states.

\[\tilde{Q} = (26500 \pm 900) \text{ cps/s} \]