Design and Characteristics of the Jordan Research and Training Reactor

Ayman I. Hawari
Jordan Atomic Energy Commission
North Carolina State University

Young-Ki Kim
Korea Atomic Energy Research Research Institute
Jordan Overview

- Population ~ 6 million
- Area ~ 89212 km²
- Capital – Amman (~ 40% of population)
- GDP ~ $18 billion
 - Growth ~ 3-4% per year
- Energy imports > 20% of GDP
Electricity and Water
Motivation

The Human Development Index is a comparative measure of life expectancy, literacy, education, and standards of living. Countries fall into four broad categories based on their HDI: very high, high, medium, and low human development.

4,000 kWh per person per year is the dividing line between developed and developing countries.
Nuclear Energy in Jordan

- Commitment to nuclear energy was officially made in early 2007

- Basic elements of the program
 - Initiating a project for building a nuclear power plant
 - Exploration of potential uranium resources
 - Science and education
 - Jordan Research and Training Reactor (JRTR)
 - Human resource development
 - University level nuclear science and engineering programs
JRTR Background

- RFP issued in early 2009
- Evaluation process lasted nearly a year
- KAERI-DAEWOO consortium (KDC) was selected to execute the project
- Contract signed and project started in March 2010
JRTR Design Guidelines

- Multi-purpose reactor for performing research and education in science and engineering
 - Open pool and LEU fueled
- Achieve optimal thermal neutron flux levels per unit power to support the intended applications
- Maintain negative feedback behavior under all conditions
- Maintain radiation exposure to personnel and public within internationally set limits under all operating and accident conditions
JRTR General Characteristics

- 5-MWth (upgradable to 10-MWth)
- Light water moderated and cooled
- MTR (U₃Si₂ in Al matrix)
 - 19.75% U-235 enrichment
 - 7 kg loading
- D₂O and Be reflectors
- Four Hf CARs, two B₄C SSR
- Four Beam tubes
- Irradiation ports for various applications (e.g., NAA)
- Thermal column
JRTR Core Characteristics

- Core design satisfies general safety and performance requirements
 - Thermal neutron flux reaching 10^{14} n/cm2·s
 - Power distribution with overall peaking of 2.5
 - Power coefficient of reactivity of nearly -13 pcm/MW
JRTR Safety Considerations

- Reactor design satisfies general safety objectives
 - Shutting down the reactor and maintaining it in a safe shutdown condition for all operational states or accident conditions
 - Providing for adequate heat removal from the core after shutdown, including accident conditions
 - Containing radioactive material in order to minimize its release to the environment

- Equipped with systems and components to meet the above objectives

- Safety analysis showed that the above objectives are met under all conditions
JRTR Safety Analysis

- Safety analysis addressed
 - Normal operating conditions
 - Anticipated operational occurrences (AOO)
 - Accident conditions

- Initiating events selected based on international guidance and experience

- Example events
 - Loss of electric power (AOO)
 - Peak clad temperature < 150 °C
 - CHFR > 2
 - Rupture of primary coolant system pipe (accident)
 - Peak clad temperature < 150 °C
 - CHFR > 2
JRTR Utilization

- Intense source of neutrons for various applications
 - Neutron Activation Analysis infrastructure
 - Isotope production infrastructure
 - Hot cells
 - Beam tubes for neutron science
 - In-pool and thermal column irradiation locations

- Education and Training
 - Support Jordan’s education programs in science and engineering
JRTR Utilization Characteristics

- Optimized performance
 - Thermal neutron flux in all locations reaching $10^{13}-10^{14} \text{n/cm}^2\cdot\text{s}$

- Science program is under development
Overall Progress
Training

- Training program has been initiated with KDC – 25 trainees
 - Engineering personnel
 - Prepare the first batch of JRTR operators

- Training to support utilization will be soon underway
Summary

- JRTR represents a successful collaboration between JAEC and KDC

- The JRTR is a high performance research reactor that is expected to serve as a regional science and education hub

- The JRTR has reached advanced stages in its construction and licensing

- Commissioning activities are scheduled to begin during 2015

- The JRTR is a key component in Jordan’s nuclear program, which is viewed as essential to the country’s future progress
THANK YOU